The TX-series is the most common used wrench when standard industrial torque tools are restricted by using size in their ability to engage the fastener. The TX eliminates problems around the nut, behind the nut and above the nut. On applications with extended stud protrusion, the TX, without problems, slips over to get the torque implemented with an accuracy of $+/-3 \%$.

When designing the TX series every application obstruction was taken into consideration. Every unnecessary and cumbersome component was eliminated which created a tool with multiple personalities! The TX prides itself on fitting where others can not and applying vast amounts of torque unheard of by most. All the while still being the most field serviceable tool capable of being utilized and maintained in some of the most demanding environments around the globe. Add to that a tight tolerance torque output t hat is repeatable over and over year after year

Hydraulic tool unit

Changable Ratchet Unit

Complete Assembled tool

- Torque range from 61 to 64200 Nm
- Hex size range from 17 to 155 mm
- Easily changeable hex drives.
- Accuracy $\pm 3 \%$
- Low build tool
- In-Line Reaction Pad

Patented "Peanut-Shaped" Piston

This feature allows the cylinder and ratchet link to be the same width. The oval piston design provides more force area than the two-piston design found in competitor tools, and is a unique Torcup feature. It is the only tool on the Market with an oval piston design. The single piston design also makes the tool much more cost-effective, easier to maintain and more robust. Friction reducing sliders prevent wear on the piston. 3 moving parts principle from the original tool designs is upheld. Hence, the tool
 is the most durable, but also the easiest tool on the market to maintain and service.

Dual Independent Swivels

$360^{\circ} \times 360^{\circ}$ swivels allow for individual movement of hoses. Steel construction adds durability and toughness using Cejn Certified Quick Couplers. The cost of replacement swivels is a fraction of the competitors.

Quick Connect Couplers

Each tool is fitted with quick connect, no-drip, threadless safety couplers, with $4: 1$ safety ratio.

Hex Link Cassettes

Steel alignment pins connect lower reaction area for added strength. The hex link cassette is extremely maintenance friendly as an operator can de/ and re-assemble the cassette with the use of 3 sizes of allen keys within 8 minutes.

Cylinder and Link Material

Both cylinder and link are manufactured from 4340 Aircraft Quality high strength steel alloy

Nose Radius

Tight nose radius allows this tool to fit in applications where clearance constraints make other tools too bulky

In-Line Reaction Pad

This design ensures torsion-free reaction every time.

Link Pin

One pin for link to cylinder engagement - no tool required for swapping ratchet links. Link pins with wire lock is supplied for Offshore environment as standard.

PART \#	TX-1	TX-2	TX-4	TX-8	TX-16	TX-32	TX-45
Hex Range From	$\begin{aligned} & 5 / 8 " / \\ & 17 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 3 / 4 " / \\ & 19 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 1 " / \\ & 25 \mathrm{~mm} \end{aligned}$	17/8"/ 50 mm	$\begin{aligned} & 25 / 8 \mathrm{l} / \\ & 65 \mathrm{~mm} \end{aligned}$	$3 \text { 1/8"/ }$ $80 \mathrm{~mm}$	3 1/8"/ 80mm
Hex Range To	$\begin{aligned} & 1 \\ & 5 / 8 " / \\ & 41 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 2 \\ & 3 / 8 " / \\ & 60 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 3 \\ & 1 / 8 " / \\ & 80 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { 4"/ } \\ & 105 \mathrm{~mm} \end{aligned}$	45/8"/ 115 mm	6 1/8"/ 155 mm	6 1/8"/ 155 mm
Minimum Torque(Ft/lbs)	45	192	395	830	1560	3220	4850
Maximum Torque (Ft/lbs)	560	1928	3950	8630	16600	35650	47380
Minimum Torque (Nm)	61	260	535	1125	2155	4365	6575
Maximum Torque (Nm)	759	2614	5355	11699	22503	48327	64228
Output Accuracy	+-3\%	+-3\%	+-3\%	+-3\%	+-3\%	+-3\%	+-3\%
Repeatability	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Duty Cycle	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Cylinder Weight (lbs)	1	3.50	6.00	11.70	16.00	26.00	29.00
Cylinder Weight (Kg)	0.45	1.50	2.70	5.00	7.30	11.50	13.00
Link Weight From (lbs)	1	2.40	5.40	11.90	21.00	29.00	29.00
Link Weight To (lbs)	1	3.50	7.60	14.50	28.00	39.50	39.50
Link Weight From (Kg)	0.45	1.00	2.40	5.50	9.50	13.00	13.00
Link Weight To (Kg)	0.45	1.50	3.40	6.50	13.00	17.90	17.90
Length	$\begin{aligned} & 4.37 / \\ & 111.0 \end{aligned}$	$\begin{aligned} & 6.45 / \\ & 163.8 \end{aligned}$	$\begin{aligned} & 7.87 / \\ & 199.9 \end{aligned}$	$\begin{aligned} & 10.20 / \\ & 259.1 \end{aligned}$	$\begin{aligned} & 12.93 / \\ & 328.4 \end{aligned}$	$\begin{aligned} & 15.8 / \\ & 401.3 \end{aligned}$	$\begin{aligned} & 16.75 / \\ & 425.5 \end{aligned}$
Height	$\begin{aligned} & 3.25 / \\ & 82.6 \end{aligned}$	$\begin{aligned} & 4.00 / \\ & 101.6 \end{aligned}$	$\begin{aligned} & 5.60 / \\ & 142.2 \end{aligned}$	$\begin{aligned} & 7.00 / \\ & 177.8 \end{aligned}$	$\begin{aligned} & 7.58 / \\ & 192.5 \end{aligned}$	$\begin{aligned} & 9.50 / \\ & 241.3 \end{aligned}$	$\begin{aligned} & 10.28 / \\ & 261.1 \end{aligned}$
Width	$\begin{aligned} & 0.78 / \\ & 19.8 \end{aligned}$	$\begin{aligned} & 1.25 / \\ & 31.8 \end{aligned}$	$\begin{aligned} & 1.63 / \\ & 41.4 \end{aligned}$	$\begin{aligned} & 2.05 / \\ & 52.1 \end{aligned}$	$\begin{aligned} & 2.50 / \\ & 63.5 \end{aligned}$	$\begin{aligned} & 3.24 / \\ & 82.3 \end{aligned}$	$\begin{aligned} & 4.88 / \\ & 124.0 \end{aligned}$
Radius	$\begin{aligned} & 0.23 / \\ & 5.8 \end{aligned}$	$\begin{aligned} & 0.36 / \\ & 9.1 \end{aligned}$	$\begin{aligned} & 0.46 / \\ & 11.7 \end{aligned}$	$\begin{aligned} & 0.54 / \\ & 13.7 \end{aligned}$	$\begin{aligned} & 0.65 / \\ & 16.5 \end{aligned}$	$\begin{aligned} & 0.93 / \\ & 23.6 \end{aligned}$	$\begin{aligned} & 0.93 / \\ & 23.6 \end{aligned}$

